SmartMäthz

Simplifying Linear Expressions

Grade 7 Linear Equation Worksheet Date:

LET'S MAKE SIMPLIFYING LINEAR EXPRESSIONS EASY
Factorize the following

1.	$42 \mathrm{x}+15=$	8.	$5 \mathrm{x}+15=$
2.	$15 x+20=$	9.	$2 \mathrm{x}+4=$
3.	$9 \mathrm{x}-12=$	10.	$5 x^{2}+10=$
4.	$7 \mathrm{x}+35=$	11.	$3 x^{2}+x=$
5.	$3 \mathrm{x}-21=$	12.	$15 x-25 x^{2}=$
6.	$5 \mathrm{x}-25=$	13.	$21 x+14=$
7.	$6 \mathrm{x}+18=$	14.	$6 x-3 x^{2}=$

SmartMẩthz

Simplifying Linear Expressions

Answers

1.	$42 \mathrm{x}+15=3(14 \mathrm{x}+5)$	8.	$5 \mathrm{x}+15=5(\mathrm{x}+3)$
2.	$15 \mathrm{x}+20=5(3 \mathrm{x}+4)$	9.	$2 \mathrm{x}+4=2(\mathrm{x}+4)$
3.	$9 \mathrm{x}-12=3(3 \mathrm{x}-4)$	10.	$5 x^{2}+10=5\left(x^{2}+2\right)$
4.	$7 \mathrm{x}+35=7(\mathrm{x}+5)$	11.	$3 x^{2}+x=x(3 x+1)$
5.	$3 \mathrm{x}-21=3(\mathrm{x}-7)$		
		12.	$15 x-25 x^{2}=5 x(3-5 x)$
6.	$5 \mathrm{x}-25=5(\mathrm{x}-5)$	13.	$21 x+14=7(3 x+2)$
7.	$6 \mathrm{x}+18=6(\mathrm{x}+2)$	14.	$6 x-3 x^{2}=3 x(2-x)$

Answer Explanation

1. First, we look for the greatest common factor (GCF) of the two terms. The GCF of 42 x and 15 is 3 . So, we can factor 3 from both terms, to have: $42 \mathrm{x}+15=3(14 \mathrm{x}+55)$
So, the factorized form of $42 x+15$ is $3(14 x+5)$.
2. First, we look for the greatest common factor (GCF) of the two terms. The GCF of 15 x and 20 is 5 . So, we can factor 5 from both terms, to have: $15 \mathrm{x}+20=5(3 \mathrm{x}+4)$
So, the factorized form of $15 \mathrm{x}+20$ is $5(3 \mathrm{x}+4)$.
3. First, we look for the greatest common factor (GCF) of the two terms. The GCF of $9 x$ and 12 is 3 . So, we can factor 3 from both terms, to have: $9 \mathrm{x}-12=3(3 \mathrm{x}-4)$
So, the factorized form of $9 \mathrm{x}-12$ is $3(3 \mathrm{x}-4)$.
4. First, we look for the greatest common factor (GCF) of the two terms. The GCF of 7 x and 35 is 7 . So, we can factor 7 from both terms, to have: $7 \mathrm{x}+35=7(\mathrm{x}+5)$
So, the factorized form of $7 \mathrm{x}+35$ is $7(\mathrm{x}+5)$.
5. First, we look for the greatest common factor (GCF) of the two terms. The GCF of 3 x and 21 is 3 . So, we can factor 3 from both terms, to have: $3 \mathrm{x}-21=3(\mathrm{x}-7)$
So, the factorized form of $3 \mathrm{x}-21$ is $3(\mathrm{x}-7)$.
6. First, we look for the greatest common factor (GCF) of the two terms. The GCF of 5 x and 25 is 5 . So, we can factor 5 from both terms, to have: $5 \mathrm{x}-25=5(\mathrm{x}-5)$
So, the factorized form of $5 \mathrm{x}-25$ is $5(\mathrm{x}-5)$.
7. First, we look for the greatest common factor (GCF) of the two terms. The GCF of 6 x and 18 is 6 . So, we can factor 6 from both terms, to have: $6 \mathrm{x}+18=6(\mathrm{x}+3)$
So, the factorized form of $6 \mathrm{x}+18$ is $6(\mathrm{x}+3)$.
8. First, we look for the greatest common factor (GCF) of the two terms. The GCF of 5 x and 15 is 5 . So, we can factor 5 from both terms, to have: $5 \mathrm{x}+15=5(\mathrm{x}+3)$
So, the factorized form of $5 \mathrm{x}+15$ is $5(\mathrm{x}+3)$.
9. First, we look for the greatest common factor (GCF) of the two terms. The GCF of $2 x$ and 4 is 2 . So, we can factor 2 from both terms, to have: $2 \mathrm{x}+4=2(\mathrm{x}+2)$
So, the factorized form of $2 \mathrm{x}+4$ is $2(\mathrm{x}+2)$.
10. First, we look for the greatest common factor (GCF) of the two terms. The GCF of $5 x^{2}$ and 10 is 5 . So, we can factor 5 from both terms, to have: $5 x^{2}+10=5\left(x^{2}+2\right)$
So, the factorized form of $5 x^{2}+10$ is $5\left(x^{2}+2\right)$.
11. First, we look for the greatest common factor (GCF) of the two terms. The GCF of $3 x^{2}$ and x is x. So, we can factor x from both terms, to have: $3 x^{2}+x=x(3 x+1)$
So, the factorized form of $3 x^{2}+x$ is $x(3 x+1)$.
12. First, we look for the greatest common factor (GCF) of the two terms. The GCF of 15 x and $25 x^{2}$ is $5 x$. So, we can factor $5 x$ from both terms, to have:
$15 x-25 x^{2}=5 x(3-5 x)$
So, the factorized form of $15 x-25 x^{2}$ is $5 x(3-5)$.
13. First, we look for the greatest common factor (GCF) of the two terms. The GCF of 21 x and 14 is 7 . So, we can factor 7 from both terms, to have: $21 \mathrm{x}+14=7(3 \mathrm{x}+2)$
So, the factorized form of $21 \mathrm{x}+14$ is $7(3 \mathrm{x}+2)$.
14. First, we look for the greatest common factor (GCF) of the two terms. The GCF of 6 x and $3 x^{2}$ is 5 . So, we can factor 3 from both terms, to have: $6 x-3 x^{2}=3 x(2-x)$
So, the factorized form of $6 x-3 x^{2}$ is $3 x(2-x)$.
