Simplifying Linear Expressions

\qquad Name: \qquad

LET'S MAKE SIMPLIFYING LINEAR EXPRESSIONS EASY

Simplify the following

1. $15 y+3-y=$
2. $6(b-6)=$
3. $9 p-3 v-(8 v+2 p)=$
4. $16+9 a-(4+3 a)=$
5. $7 c+10-c=$
6. $8(5 p-3)-4=$
7. $h-(5 y+h)=$
8. $-2 c+(8 c-7)=$
9. Write an equivalent expressions for $9 a+45$.
10. Write an equivalent expressions for $6 a+24$.
11. Write an equivalent expression for $8(x+2)-14$.
12. Write an equivalent expression for $(c+6)-2+9$.
13. Write an equivalent expression for $5(x+3)-7$.
14. An squared whiteboard has a perimeter of $(4 x+24)$. What is the length of each side of the whiteboard?
15. $9(3 a-2)+18 a$ and $9(5 a-2)$ are equivalent? Is it correct? Explain why or why not?

Simplifying Linear Expressions

Answers

1. $14 y+3$
2. $6 b-36$
3. $7 p-11 v$
4. $6(a+2)$
5. $6 c+10$
6. $40 p-28$
7. $-5 y$
8. $6 c-7$
9. $9(a+5)$
10. $6(a+4)$
11. $8 x+2$
12. $c+13$
13. $5 x+8$
14. The length of each of the four sides is $(x+6)$.
15. The second expression is: $9\left(5 a^{\llcorner } 2\right)$.

The first expression is equivalent to the second expression. Yes, it is correct.

Answer Explanation

1. $14 y+3$
2. $6 \mathrm{~b}-36$
3. $9 \mathrm{p}-3 \mathrm{v}-(8 \mathrm{v}+2 \mathrm{p})$ (parenthesis)
$=9 \mathrm{p}-3 \mathrm{v}-8 \mathrm{v}-2 \mathrm{p}$ (combine like terms)
$=9 \mathrm{p}-2 \mathrm{p}-3 \mathrm{v}-8 \mathrm{v}$
$=7 \mathrm{p}-11 \mathrm{v}$
4. 16-9a-(4+3a) (parenthesis)
$=16-9 \mathrm{a}-4+3 \mathrm{a}$ (combine like terms)
$=16-4-9 a+3 a=12-6 a$
5. $7 \mathrm{c}+10-\mathrm{c}$ (parenthesis)
$=7 \mathrm{c}-\mathrm{c}+10$ (combine like terms)
$=6 \mathrm{c}+10$
6. $8(5 p-3)-4$ (parenthesis)
$=40 \mathrm{p}-24-4$ (combine like terms)
$=40 \mathrm{p}-28$
7. $\mathrm{h}-(5 \mathrm{y}+\mathrm{h})$ (parenthesis)
$=\mathrm{h}-5 \mathrm{y}-\mathrm{h}$ (combine like terms)
$=5 \mathrm{y}$
8. $-2 \mathrm{c}+(8 \mathrm{c}-7)$ (parenthesis)
$=-2 \mathrm{c}+8 \mathrm{c}-7$ (combine like terms)
$=6 \mathrm{c}-7$
9. Write it in factorized form.

Find the GCF.
Which is 9 .
Place that outside the parenthesis.
And you get an answer of:
$9(a+5)$
10. Write it in factorized form.

Find the GCF.
Which is 6 .
Place that outside the parenthesis.
And you get an answer of:
$6(a+4)$
11. We have to find an equivalent equation. If we work the equation out, we will generate an equal expression:
$8(\mathrm{x}+2)-14$ (parenthesis)
$=8 \mathrm{x}+16-14$ (combine like terms)
$=8 \mathrm{x}+2$
12. We have to find an equivalent equation. If we work the equation out, we will generate an equal expression:
$(\mathrm{c}+6)-2+9$ (parenthesis)
$=\mathrm{c}+6-2+9$ (combine like terms)
$=\mathrm{c}+6+9-2$ (order of operation)
$=\mathrm{c}+13$
13. We have to find an equivalent equation. If we work the equation out, we will generate an equal expression:
$5(\mathrm{x}+3)-7$ (parenthesis)
$=5 \mathrm{x}+15-7$ (combine like terms)
$=5 \mathrm{x}+8$
14. Step 1: This looks very hard at first. We need to remember that in a square all four sides are equal. So it stands to reason that if we divide the perimeter by 4 , we can determine the length of one side.
Step 2: Take 4 as common factor in $(4 x+24)$. The result will be $4(x+6)$. $4(\mathrm{x}+6)$ is the perimeter of square whiteboard whose all four sides are equal.
Step 3: So divide $4(\mathrm{x}+6)$ by 4
The length of each of the four sides is $(x+6)$.
15. Step 1) We will write each expression in its simplest form.

Step 2) Distribute and combine like terms in the first expression to get
$9(3 \mathrm{a}-2)+18 \mathrm{a}=27 \mathrm{a}-18+18 \mathrm{a}$ (combine like terms)
$=45 \mathrm{a}-18$ (take 9 as common factor)
$=9(5 a-2)$
The second expression is: $9(5 \mathrm{a}-2)$.
The first expression is equivalent to the second expression. Yes, it is correct.

