SmartMäthz

Probability of Compound Event

Grade 7 Probability \& Data Worksheet Date:
\qquad

Name: \qquad

LET'S PRACTICE WITH PROBABILITY OF COMPOUND EVENT Solve the following problems

1. Mark chose two cards randomly from a deck. What is the probability of getting an Ace and a Jack without replacement?
2. 4 coins are tossed and three six-sided dice are rolled. What is the probability of getting 4 heads and an odd number on a die?
3. Jackson chose four cards randomly from a deck. What is the probability of getting an Ace, an Jack, a Queen and a King without replacement?
4. 5 coins are tossed and three six-sided dice are rolled. What is the probability of getting 5 heads and a number divisible by two on a dice?
5. 6 coins are tossed and three six-sided dice are rolled. What is the probability of getting 6 heads and a number divisible by three on a dice?
6. Andy can select one of 14 different shirts, three of 8 different jeans and three of 7 Jackets from a shopping mall. In how many different ways can Jeff select a shirt, jeans and a jacket?
7. How many different ways you can arrange the letters in word "TWO"?
8. Mark chose two cards randomly from a deck. What is the probability of getting an Ace and a Jack without replacement?
9. A letter is to be selected from all 26 letters. What is the probability of choosing vowels?
10. 6 coins are tossed and three six-sided dice are rolled. What is the probability of getting 6 heads and a number divisible by three on a dice?

Probability of Compound Event

Answers

Hint: Probability formulas are used to calculate the probabilities of events. Finding the probability of an event A happening can be calculated using the formula.

$$
\mathrm{P}(\mathrm{~A})=\frac{\text { Number of times } \mathrm{A} \text { occurs }}{\text { Total number of possible outcomes }}
$$

$\mathrm{P}(\operatorname{not} \mathrm{A})=1-\mathrm{P}(\mathrm{A})$
For mutually exclusive events: $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
For independent events: $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$

When draws are made without replacement, the probability changes after each draw.

1. $\frac{4}{663}$
2. $\frac{1}{32}$
3. $\frac{256}{6497400}$
4. $\frac{1}{12}$
5. $\frac{1}{192}$
6. 784
7. 6
8. $\frac{4}{663}$
9. $\frac{5}{26}$
10. $\frac{1}{192}$
