Probability of Compound Event

Grade 7 Probability \& Data Worksheet
Date:

Name: \qquad

LET'S PRACTICE WITH PROBABILITY OF COMPOUND EVENT
 Choose the correct answer from the options provided

1. A letter from the word MATH is chosen at random, then a coin is flipped. What is the probability of choosing the letter ' m ' then getting heads?
a. $\frac{17}{26}$
b. $\frac{1}{8}$
c. $\frac{5}{13}$
d. $\frac{1}{6}$
2. You flip a coin and roll a die. What is the probability, in a fraction, you flip a heads and roll a 5 or 6 ?
a. $\frac{1}{6}$
b. head
c. $\frac{1}{12}$
d. $\frac{12}{1}$
3. You draw a marble from a bag that has red, blue, and green marbles, you also flip a fair coin. What is the probability you will draw a blue marble and flip a heads?
a. $\frac{1}{6}$
b. $\frac{3}{9}$
c. $\frac{3}{6}$
d. $\frac{5}{6}$
4. Find the probability of flipping a heads on a coin, and then getting the color yellow on a spinner with 6 colors.
a. $\frac{1}{12}$
b. $\frac{2}{9}$
c. $\frac{3}{7}$
d. $\frac{7}{19}$
5. If you flip three fair coins, what is the probability that you'll get all three heads?
a. $\frac{8}{1}$
b. coin
c. $\frac{1}{16}$
d. $\frac{1}{8}$
6. At the field, there are tulips, ferns, cactus, and roses and 4 kinds of pots to hold the plants: clay, plastic, metal, and wood. If you randomly pick the plant and the pot, what is the probability that you'll end up with a tulip in a plastic pot?
a. Tulip
b. $\frac{16}{1}$
c. $\frac{1}{8}$
d. $\frac{1}{16}$
7. You flip a nickel three times. Find the probability that all flips will land on tails.
a. $\frac{1}{2}$
b. $\frac{1}{4}$
c. $\frac{1}{8}$
d. $\frac{1}{6}$

Probability of Compound Event

Answers

Hint: Probability formulas are used to calculate the probabilities of events. Finding the probability of an event A happening can be calculated using the formula.

$$
\mathrm{P}(\mathrm{~A})=\frac{\text { Number of times } \mathrm{A} \text { occurs }}{\text { Total number of possible outcomes }}
$$

$\mathrm{P}(\operatorname{not} \mathrm{A})=1-\mathrm{P}(\mathrm{A})$
For mutually exclusive events: $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
For independent events: $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$

1. B
2. A
3. A
4. A
5. D
6. D
7. C
