SmartMäthz

Order of Operations (involving the four arithmetic operations, parentheses and exponents)
Grade 6 Expressions \& Equations Worksheet Date: \qquad
Evaluate each expression using order of operations (PEMDAS).
Note: MD (Multiplication and Division is from Left to Right); AS (Addition and Subtraction is from Left to Right)

1. $\left(2^{3}+1^{4} \times 3^{3}\right)-2^{5} \div 4=\square$

Workings:

Workings:

2. $\left(3^{2} \times 2^{3}+4^{2}\right)-2^{4} \div 4=\square$

Workings:

3. $\left(7^{2} \div 49 \times 8\right)+6-2=\square$

Workings:

4. $2^{5}+17-\left(10^{2} \times 2 \div 25\right)=\square$

Workings:

5. $14+3^{3} \times\left(1^{7}-10^{2} \div 100\right)=\square$

SmartMẩthz

Order of Operations (involving the four arithmetic operations, parentheses and exponents)

Grade 6 Expressions \& Equations Answer Sheet

1. $\left(2^{3}+1^{4} \times 3^{3}\right)-2^{5} \div 4=27$
2. $\left(3^{2} \times 2^{3}+4^{2}\right)-2^{4} \div 4=84$

Workings:

$\left(2^{3}+1^{4} \times 3^{3}\right)-2^{5} \div 4$	First, evaluate the exponents $2^{3}=8 ; 1^{4}=1 ; 3^{3}=27 ; 2^{5}=32$
$=(8+1 \times 27)-32 \div 4$	Next, simplify the parenthesis $1 \times 27=27$
$=(8+27)-32 \div 4$	Again, simplify the parenthesis $8+27=35$
$=35-32 \div 4$	Then, divide $32 \div 4=8$
$=35-8$	Finally, subtract $35-8=27$
$=27$	

Workings:

$\left(3^{2} \times 2^{3}+4^{2}\right)-2^{4} \div 4$	First, evaluate the exponents $3^{2}=9 ; 2^{3}=8 ; 4^{2}=16 ; 2^{4}=16$
$=(9 \times 8+16)-16 \div 4$	Next, simplify the parenthesis $9 \times 8=72$
$=(72+16)-16 \div 4$	Again, simplify the parenthesis $72+16=88$
$=88-16 \div 4$	Now, divide $16 \div 4=4$
$=88-4$	
$=84$	

Workings:	
$\left(7^{2} \div 49 \times 8\right)+6-2$	First, evaluate the exponent $7^{2}=49$
$=(49 \div 49 \times 8)+6-2$	Again, simplify the parenthesis $49 \div 49=1$
$=(1 \times 8)+6-2$	Next, simplify the parenthesis $1 \times 8=8$
$=8+6-2$	Now, add $8+6=14$
$=14-2$	Finally, subtract $14-2=12$
$=12$	

Workings:

$2^{5}+17-\left(10^{2} \times 2 \div 25\right)$	First, evaluate the exponents $2^{5}=32 ; 10^{2}=100$
$=32+17-(100 \times 2 \div 25)$	Next, simplify the parenthesis $100 \times 2=200$
$=32+17-(200 \div 25)$	Then, simplify the parenthesis $200 \div 25=8$
$=32+17-8$	Finally, subtract $49-8=41$
$=49-8$	
$=41$	

5. $14+3^{3} \times\left(1^{7}-10^{2} \div 100\right)=14$

Workings:

$14+3^{3} \times\left(1^{7}-10^{2} \div 100\right)$	First, evaluate the exponents $3^{3}=27 ; 1^{7}=1 ; 10^{2}=100$
$=14+27 \times \times(1-100 \div 100)$	Next, simplify the parenthesis $100 \div 100=1$
$=14+27 \times(1-1)$	Then, simplify the parenthesis $1-1=0$
$=14+27 \times 0$	Now, multiply $27 \times 0=0$
$=14+0$	Finally, add $14+0=14$
$=14 \checkmark$	

